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Abstract—With the growing integration of solar power gener-
ation into smart grids, accurate solar irradiance forecasting is of
paramount importance for efficient grid operation and renew-
able energy management. In this paper, a data decomposition
approach with two different methods of deep learning and grid
search optimization was combined to develop a better hybrid
model to forecast solar irradiance. The proposed model combines
spatial and temporal information to improve forecasting accuracy
by considering the impact of meteorological constraints such
as global horizontal irradiance, temperature, relative humid-
ity, wind speed, cloud type, direct normal irradiance, diffuse
horizontal irradiance, and solar zenith angle. In addition to
the model architecture, this work incorporates hyper-parameter
optimization to fine-tune the parameters of the model for optimal
performance. The design of the model ensures that the system
adapts to the specific characteristics of the solar irradiance data
and meteorological conditions under consideration. The proposed
hybrid model was evaluated using real-world data to outperform
traditional forecasting methods in terms of accuracy. The results
of the proposed hybrid model indicate better prediction ability
as measured by four parameters (lower RMSE and MAE, fewer
epochs, and a higher R2 co-efficient).

Index Terms—Forecasting Model, Solar Irradiance, Hyper-
parameter Optimization, CEEMDAN-CNN-LSTM-Grid Search,
and Deep Learning

I. INTRODUCTION

THE rapid advancement of renewable energy technologies,
particularly solar power, has led to an increasing inte-

gration into the smart grids [1]. Accurate prediction of solar
irradiance is pivotal for optimizing the performance of solar
energy systems and aiding in efficient energy production and
grid management. This transition towards renewable energy
sources is driven by the urgent requirements to mitigate
climate change and reduce dependence on fossil fuels. Ac-
curate forecasting requires a comprehensive model that can
capture both the spatial and temporal dependencies of these
factors. Traditional forecasting methods often fall short in this
regard, leading to inaccuracies and inefficiencies. A number
of different approaches, such as numerical weather prediction
models, statistical models, machine learning models, image-
based models, and hybrid models, have been extensively
addressed in [2]. There are five different ways to predict solar
irradiance mentioned in [3], such as persistence, physical,
classical statistics, machine learning, and hybrid approaches.
The persistence technique is typically used to assess the

performance of a model by comparing the predicted outcomes
with it. Physical models utilize meteorological variables to
formulate conservation equations, facilitating the prediction of
future atmospheric states and weather phenomena. However,
the significant computational cost makes it less suitable for
short-term forecasting [4]. Each method has its limitations and
offers unique benefits, accuracy, and computational efficiencies
compared to the others.

Several time series prediction techniques based on clas-
sical statistical methods, including Auto-regressive Moving
Average (ARMA), Auto-regressive Integrated Moving Average
(ARIMA), Lasso and Markov models [5] have been employed
to develop prediction models based on the stochastic nature
of solar irradiance. Nevertheless, the forecast accuracy of
these time series schemes was low due to the non-stationary
nature of the solar irradiance time series data. In addition,
the accuracy of the prediction of Global Horizontal Irradiance
(GHI) is influenced by a range of meteorological parame-
ters, including temperature, relative humidity, wind speed,
and cloud cover [6]. To mitigate the shortcomings of those
nonlinear prediction approaches, machine learning-based sys-
tems could be implemented for better prediction accuracy of
solar irradiance. Deep learning, a subset of machine learning,
utilizes algorithms inspired by the structure and function of
the brain’s neural networks. Various deep learning models,
including Convolutional Neural Networks (CNNs), Feedfor-
ward Neural Networks (FFNNs), Recurrent Neural Networks
(RNNs) like Long-Short Term Memory (LSTM) and Gated
Recurrent Unit (GRU), and Attention-based Transformers,
have been successfully employed for predicting irradiance [7].

In [8], a hybrid model consisting of CNN and LSTM
is proposed to forecast PV power, compared to individual
models of CNN and LSTM, and performed better in terms of
precision. The work in [9] showed that the CNN-LSTM model
with a sine-cosine algorithm (SCA) outperforms CNN-LSTM
models without SCA. A hybrid model including Variational
Mode Decomposition (VMD)-CNN-LSTM-Multilayer Percep-
tron (MLP) in [10] was proposed for the hourly and step-by-
step prediction of solar irradiance and showed better inter-
ference resistance and accuracy. The work in [3] introduced
the Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN)–CNN–LSTM based solar irra-
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diance forecasting model, which outperforms several other
models and approaches. In [11] authors proposed a system
using an Improved-CEEMDAN and a Deep Residual Network
(DRESNET) with Bidirectional LSTM. An attention-based
framework in [12], was developed for multivariate time series
forecasting using the Temporal Fusion Transformer (TFT) to
capture long-distance dependencies to enhance performance.
Furthermore, optimization of hyperparameters in the deep
neural network is essential, as the performance of the model
is strongly dependent on the architecture of the system [13].
Based on prior research in solar irradiance prediction, it can be
inferred that the majority of studies have manually developed
deep learning frameworks through a process of trial and error.
This procedure is computationally intensive due to its high
computational complexity, resulting in extended execution
times for a manually tailored architecture with non-optimal
results [14].

Therefore, in this study, we present a hybrid model along
with a data decomposition approach and a deep learning
architecture that can produce accurate forecasting results of
solar irradiance without requiring manual tuning of the deep
learning network. The main contributions of the proposed
hybrid approach for forecasting of global horizontal solar
irradiance are outlined as follows:

• Introduction of a new hybrid learning model that seam-
lessly integrates the strengths of CEEMDAN, CNN,
LSTM, and grid search optimization to forecast GHI.

• The proposed hybrid model enhances forecasting accu-
racy with the integration of spatial & temporal infor-
mation. By considering weather constraints, the model
accurately represents the complex interaction of these
factors, resulting in more reliable forecasts.

• The proposed hybrid model was empirically evaluated
using real-world data from Crossville, TN, USA, which
was fetched from the solar radiation database of the
National Renewable Energy Laboratory (NREL).

• The result shows better performance compared to tradi-
tional forecasting methods in terms of statistical parame-
ters (RMSE, MAE, R2), least prediction errors, and fewer
epochs.

The remainder of the paper is organized as follows. Sec-
tion II describes the problem statement and motivation for
this research. Section III provides the dataset preparation,
data information, location, and data pre-processing. Section IV
provides the proposed methodology and a detailed descrip-
tion of the proposed CEEMDAN–CNN–LSTM-Grid Search
optimization model. Section V presents the evaluation of the
model using real-world data based on various case studies.
Finally, Section VI concludes the paper and addresses potential
future work opportunities.

II. PROBLEM STATEMENT AND MOTIVATION

Leveraging historical solar irradiance data, weather param-
eters, and relevant geographical features, our proposed model
aims to provide precise short-term and long-term forecasts.
The problem that is addressed in this paper is a multi-variate

time series-based solar irradiance prediction issue which is a
challenging task. The term ”multivariate time series” implies
that the prediction model takes into account multiple variables
and meteorological factors that influence solar irradiance. The
forecasting performance of irradiance is mainly dependent on
GHI, along with several important weather parameters [15].
The input of multiple weather parameters from the past is
used for solving this multivariate time series problem within a
window function of finite look-back of temporal information.
The study involves rigorous feature selection, model train-
ing, and validation to identify the most effective algorithms
for capturing the complex non-linear relationships inherent
in solar irradiance dynamics. The envisioned outcome is a
robust forecasting framework that significantly improves the
reliability and efficiency of solar energy systems, contributing
to the sustainable integration of solar photovoltaic (PV) power
into the broader energy landscape.

III. DATASET DESCRIPTION

The performance of the deep learning-based model heavily
depends on a reliable dataset. In this work, a dataset consisting
of three years of solar GHI with meteorological parameters-
including temperature, wind speed, relative humidity, Direct
Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI),
clearsky DNI, and cloud type from Crossville, Tennessee,
USA, was used. This dataset was originally captured by
NREL, which has developed a solar resource maps in con-
junction with different climate data from the United States
and other locations around the world [16]. There are different
intervals of data available in the database in [17], and to
get more precise actual scenarios, the 5-minute interval data
with data points of 105,120 per year of 2020–2022, have
been selected. The prepared data sets have known temporal
features such as minutes, hours, days, months, and years.
For seasonal analysis, the data set for each is divided into
four seasons; winter (Dec.-Feb.), Spring (Mar.-May), Summer
(June-Aug.), and Fall (Sept.-Nov.). After fetching the data
from the NREL database, it goes through preprocessing stages,
such as checking for missing data, removing any data outliers,
normalizing the data, identifying the correlation of the target
data with other meteorological information, and splitting the
datasets for training, validation, and testing.

The Pearson correlation matrix helps to identify features
strongly correlated with the target variable (GHI), helping
to reduce the dimensionality by removing features with low
correlation to the GHI or high correlation to each other. This
matrix provides insights into the linear relationships between
input features and GHI, helping to interpret how changes in
certain features might impact GHI. By focusing on the most
influential features, the matrix simplifies the model, leading
to better generalization and faster computation times. The
correlation matrix of the dataset is shown in Fig. 1 and each
cell in the matrix shows the correlation coefficient between
two variables. From this plot, it can be seen that DNI, clearsky
DNI, DHI, and temperature have strong positive correlations
with GHI forecasting, whereas relative humidity and solar
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zenith angle have strong negative correlations with GHI, and
wind speed and cloud type have very weak correlations with
the target variable.

Fig. 1. The Pearson correlation matrix i.e. heatmap to show the forecasting
relationship of target data (GHI) with associated meteorological parameters

IV. RESEARCH METHODOLOGY

The proposed hybrid methodology used for the prediction
of solar irradiance in this paper combines the time-series
data decomposition or signal processing and deep learning
techniques. The proposed methodology for forecasting of GHI
combines CEEMDAN to decompose the time series data
into Intrinsic Mode Functions (IMFs), capturing both trends
and oscillations. The CNN network extracts spatial features,
while the LSTM network handles temporal dependencies for
sequential data. In addition, the hyperparameter tuning using
grid search optimization improves the model performance by
selecting the optimal configuration for more accurate pre-
dictions. Each of the techniques employed in the proposed
model including CEEMDAN, CNN, LSTM, and Grid Search
Optimization for hyperparameter tuning is discussed briefly in
this section.

A. CEEMDAN

The CEEMDAN is an enhanced version of the original
Empirical Mode Decomposition (EMD) and its extension En-
semble Empirical Mode Decomposition (EEMD) and performs
well with non-stationary and non-linear time series data [18].
It exhibits superior spectral separation of the modes, reduces
the number of iterations, minimizes reconstruction errors, and
enhances the decomposition process with reduced computa-
tional costs. As in [18] the equations for calculating IMFs and
residual can be written as in Eq. (1) to Eq. (3). Consider a raw
data f(t) and k-th IMF be (IMF k)(t). EMDj(t) denotes the

j-th IMF of EMD decomposition. The SNR of each step is
denoted as εk, which is the standard deviation of Gaussian
white noise with standard normal distribution is ωi(t). The
original time series data, denoted as f i(t) is augmented by
the addition of white noise ωi(t) at i = 1, 2, 3, . . . , n.

IMFk(t) =
1

n

n∑
i=1

EMD1

(
rk−1(t) + εk−1EMDk−1(ω

i(t))
)
,

where k = 2, 3, . . . ,K
(1)

rk(t) = rk−1(t)− IMFk(t) (2)

f(t) =

K∑
k=1

(IMFk(t) + r(t)) (3)

The procedure of this algorithm ends when the residue has
two extreme points and cannot be decomposed further. The
final residue is r(t), and the actual information f(t) correlates
as shown in Eq. (3), where K is the number of total modes.

B. CNN

Convolutional Neural Networks (CNNs) are suitable for
forecasting of time series irradiance because of their inherent
ability to detect spatial features in data [19]. Solar irradiance
data often exhibits spatial dependencies, as the distribution
of sunlight across geographical locations can significantly
impact energy generation. CNNs excel at learning hierarchical
representations of spatial features, making them effective in
recognizing complex patterns in solar irradiance maps or
images. Using convolutional layers, CNNs automatically learn
relevant features, which are important for accurate irradiance
predictions. Multiple-level data processing and dimensionality
reduction are the foundation of CNNs, which turn input
data into meaningful features. Furthermore, the shared weight
characteristics of convolutional and pooling layers reduce the
number of parameters in the CNN model, thereby mitigating
training challenges and the risk of overfitting.

C. LSTM

The LSTM is a deep neural network, well-suited for fore-
casting of solar irradiance because of its ability to detect model
temporal features in time series data [8]. Solar irradiance
exhibits dynamic patterns that vary over time, influenced by
factors such as the time of day, season, and weather conditions.
LSTM learns patterns in the historical time series of irradiance,
allowing them to make predictions that account for the inherent
temporal dynamics. This makes LSTMs particularly valuable
for predicting changes in solar irradiance throughout the
day and across different seasons, enhancing the accuracy of
forecasts for renewable energy applications. The ability of
LSTMs to model complex temporal dependencies makes them
a powerful tool in the context of solar energy prediction.
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D. Grid Search for Hyperparameter Optimization

The grid search is a hyperparameter optimization algorithm
used to systematically explore a predefined hyperparameter
space for deep learning models. The procedure involves defin-
ing a grid of hyperparameter values, creating all possible
combinations, and training and evaluating the model for each
combination. The algorithm exhaustively searches the hyper-
parameter space, assessing model performance using a chosen
metric. The optimal set of hyperparameters is determined
based on the best performing configuration. The grid search
is straightforward to implement and provides a systematic
approach to finding the best hyperparameters for a given
model [13]. The proposed model is trained using the identified
optimal hyperparameters.

Fig. 2. The Block Diagram of the Proposed Hybrid Deep Learning Model

E. Proposed Hybrid Model

The objective of this work is to predict solar irradiance with
higher accuracy with the least forecast errors. The complete
block diagram of the proposed model is shown in Fig. 2.
The proposed system presents a comprehensive approach that
integrates diverse input parameters, including solar irradiance,
temperature, relative humidity, cloud type, DHI, DNI and
solar zenith angle. The system leverages a sophisticated data
preprocessor to enhance the quality of the input features before
subjecting them to the CEEMDAN algorithm. This multi-stage
decomposition process facilitates the extraction of temporal
and spectral characteristics, effectively capturing the nuanced
patterns inherent in solar irradiance data. The subsequent
integration of these features into CNN and LSTM models
allows the exploitation of spatial and temporal dependencies,
respectively. The adoption of a grid search algorithm for
hyperparameter optimization is such that the models are fine-
tuned to their optimal configurations. The iterative nature of
the system involves continuous testing against validation data
and dynamic adjustment of hyperparameters.

V. RESULTS AND DISCUSSION

The proposed model was designed using Python program-
ming and the used libraries are PyEMD, Tensorflow, Keras,
Scikit-learn, Numpy, Pandas, and Matplotlib. The simulation
was performed on a Lenovo Legion 7i machine with the
Intel Core i7, 2.3 GHz, 11800H processor, 32 GB DDR4
RAM & Nvidia GeForce RTX 3060 graphics. The dataset was
decomposed using the CEEMDAN algorithm by M. Torres
[18], in which the decomposed data is shown in Fig. 3.

After data decomposition, the model was trained to learn
the time series data sequence with the window function and
the CNN-LSTM-based deep learning network. The hyperpa-
rameter of the learning model was optimized using the grid
search method to achieve better performance and the least
errors in the prediction values. The model was trained with 2
years of multivariate data and then validation and testing are
performed on a seasonal basis. There are four different seasons
in the selected location of Crossville, TN, and each season
shows the forecasting performance of the model. Although
the forecasting model computed the predicted irradiance for
whole years due to space limitations, the selected three days
of predicted versus actual data are shown and evaluated the
performance of the designed system. In addition, only two
seasons of forecasted data are presented in this paper, although
all four seasons of predicted data were evaluated.

A. Forecasting Performance in Summer

The selected three-day summer horizon was June 16th to
June 18th to compare the actual and predicted results, which
is shown in Fig. 4. In the summer, the solar irradiance is
generally highest as compared to other seasons and it is
important to predict the solar irradiance with greater accuracy.
It is found that, as there are a lot of peaks in the actual solar
irradiance in summer, the forecasting model is trying to reach
the peak and there is a little deviation but still performed better
as compared to other standard algorithms such as CNN, GRU,
and LSTM models.

B. Forecasting Performance in Winter

The model predicted the irradiance for three days (Decem-
ber 23rd to December 25th) in the winter season with good
accuracy. The forecasted output of the proposed method is
compared with popular forecasting approaches such as: CNN,
LSTM, GRU and outperformed those approaches, as shown in
Fig. 5.

C. Performance Parameters

The performance of the forecasting problem is determined
by errors in prediction and measured by the calculation of
the prediction errors of the model as compared with the
ground truth time series data. When forecasting models are
evaluated, particularly those using hybrid algorithms, several
performance parameters are commonly used to assess their ef-
fectiveness. Some key performance metrics are Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), Coefficient
of Determination (R2), and Mean Squared Error (MSE) [20].
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Fig. 3. Time Series Data Decomposition into IMFs using the CEEMDAN algorithm, whereas IMF1 has the highest, and IMF15 has the lowest frequency

Fig. 4. Forecasting analysis of solar irradiance in the Summer season

MAE is the average absolute difference between the actual
and predicted values. It provides a measure of the average
magnitude of errors without considering their direction. MSE
calculates the average of the squared differences between
actual and predicted values. RMSE is the square root of the
MSE. R2 measures the proportion of variance in the dependent
variable that is predictable from the independent variable. A
higher R2 indicates a better fit. The performance of the model
was measured using RMSE, MAE, and R2. The lowest value

Fig. 5. Forecasting analysis of solar irradiance in the Winter season

of RMSE and MAE is preferred for achieving better forecast-
ing results along with high R2 value. The unit of RMSE and
MAE is W/m2 and R2 is dimensionless. The residual error
can be written as: εi = GHIground truth,i − GHIpredicted,i, which
implies that, εi = yi − ŷi, where yi, ŷi and ȳi are denoted as
actual value, predicted value, and the mean value of the data
points, respectively. The mathematical formulas as in [20] for
the calculation of RMSE, MAE, and R2 are given in Eq. (4)
to Eq. (6) respectively, where N is the number of data points.
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RMSE =

√√√√ 1

N

N∑
i=1

ε2i (4)

MAE =
1

N

N∑
i=1

|εi| (5)

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − ȳi)2
(6)

The relative performance of the proposed model and that of
other popular algorithms (CNN, LSTM, and GRU), compared
to the predicted output with the actual data from NREL is
presented in Table I. It is evident that the proposed system
performed better, exhibited the least errors during prediction,
and a comparatively higher R-square value for better fit.
Despite being computationally complex, the proposed model
can handle time-series data complexity, resulting in better
feature extraction, faster convergence with fewer epochs, and
better predictive accuracy than the other model compared with.

TABLE I
COMPARISON OF PERFORMANCE OF THE PROPOSED MODEL

Parameters CNN LSTM GRU Proposed
RMSE 43.1879 38.2384 43.2561 37.1773
MAE 14.3241 14.2120 14.4772 14.0553
R2 0.9741 0.9748 0.9742 0.9837

Epochs 20 30 25 15

VI. CONCLUSIONS

This work proposed a multivariate hybrid system to solve
the solar irradiance forecasting problem and developed the
model utilizing the CEEMDAN, CNN, LSTM, and Grid-
Search-based hyperparameter optimization algorithms. The
use of multiple weather constraints in the dataset helped
predict accurately, which is essential for load balancing and
stability in smart grid systems. Through rigorous case studies
in different seasons throughout the year, the proposed model
exhibits better performance based on forecasting accuracy and
the least errors in prediction. The performance of the proposed
model was evaluated via statistical parameters (RMSE, MAE,
and R2) and the model exhibited better prediction, fewer
errors, and lower epochs, resulting in faster convergence as
compared to the other popular forecasting techniques. In the
forecasting problem, there is always room for improvement in
the future by considering much larger training datasets and a
more robust learning model.
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